Email: alberto.macho@psc.ac.cn
个人网页: www.macholabpsc.com


Molecular Plant-Bacteria Interactions

Alberto Macho



2015 – Present      Principal Investigator, Center of Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, China.

2015 – Present      Principal Investigator, Shanghai Center for Plant Stress Biology, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai, China.

2011 – 2014    Postdoctoral researcher in the group of Prof. Cyril Zipfel, The Sainsbury Laboratory, Norwich, UK.


2005-2010 PhD in Biology (cum laude)

Department of Cell Biology, Genetics and Physiology, Genetics Area, University of Málaga, Spain. Supervisor: Dr Carmen R. Beuzón.

2004-2006 Master’s Degree in Biotechnology

University of Málaga, Spain.

1999-2004 Bachelor of Sciences (Biology)

University of Málaga, Spain.


The overall purpose of our group is deciphering the molecular basis of biotic stress caused by bacterial pathogens, and the mechanisms of plant disease resistance. We are interested in understanding alterations in plant signaling, metabolism, hormonal balances, and proteomic changes, underlying both immune responses and bacterial virulence activities. Our goal is to generate fundamental knowledge and to deploy applied strategies to achieve sustainable solutions to fight plant disease. For our research, we use an integrated multidisciplinary approach combining biochemistry, molecular biology, cell biology, and genetics, on both pathogen and host plants.


    56. Yu G., Xian L., Xue H., Yu W., Rufian J., Sang Y., Morcillo R., Wang Y., and Macho A.P. A bacterial effector protein prevents MAPK-mediated phosphorylation of SGT1 to suppress plant immunity. BioRxiv (preview) (https://www.biorxiv.org/content/10.1101/641241v3)


    55. Xian L., Yu G., Wei Y., Morcillo R., Li Y., Xue H., Rufian J., and Macho AP. A bacterial effector protein hijacks plant metabolism to support bacterial nutrition. SSRN (preview): https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3479448


    54. Hao X, Lozano-Duran R.*, and Macho A.P.* Insights into the root invasion by the plant pathogenic bacterium Ralstonia solanacearum. Plants (2020), in press


    53. Wang X., Ren M., Liu D., Zhang D., Zhang C., Lang Z., Macho A.P.*, Zhang M.,* and Zhu J.K.* Large-scale eQTL identification in Arabidopsis reveals novel candidate regulators of immune responses and other processes. Journal of Integrative Plant Biology (2020), online early https://doi.org/10.1111/jipb.12930


    52. Lee E., Santana B.V.N., Samuels E., Benitez-Fuente F., Corsi E., Botella M.A., Perez-Sancho J., Vanneste S., Friml J., Macho A.P., Alves-Azevedo A., and Rosado A. Rare Earth Elements induce cytoskeleton-dependent and PI4P-associated rearrangement of SYT1/SYT5 ER-PM contact site complexes. Journal of Experimental Botany (2020), in press.


    51. Wang P., Hsu C-C., Du Y., Zhu P., Zhao C., Fu X., Zhang C., Paez J.S., Macho A.P., Tao W.A., and Zhu J-K. Mapping Proteome-Wide Targets of Protein Kinases in Plant Stress Responses. PNAS (2020) 117:3270-3280.  https://doi.org/10.1073/pnas.1919901117


    50. Sang Y. #, Yu W. #, Zhuang H., Wei Y., Derevnina L., Yu G., Luo J., and Macho A.P. Intra-strain elicitation and suppression of plant immunity by Ralstonia solanacearum type-III effectors in Nicotiana benthamiana. Plant Communications (2020) online early https://doi.org/10.1016/j.xplc.2020.100025


    49. Morcillo R., Zhao A., Tamayo-Navarrete M.I., García-Garrido J.M., and Macho A.P. A versatile method for tomato root transformation followed by inoculation with Ralstonia solanacearum allows straightforward genetic analysis for the study of bacterial wilt disease. Journal of Visualized Experiments (2020) 157, e60302. doi:10.3791/60302


    48. Morcillo RJL., Singh SK., He D., An G., Vilchez JI., Tang K., Yuan F., Sun Y., Shao C., Zhang S., Yang Y., Liu X., Dang Y., Wang W., Gao J., Huang W., Lei M., Song C-P., Zhu J-K., Macho AP., Pare PW., and Zhang H. Diacetyl determines plant-bacteria relation via phosphate-dependent modulation of plant immunity. EMBO Journal (2020) 39(2):e102602. https://doi.org/10.15252/embj.2019102602


    47. Garnelo-Gomez B., Zhang D., Rosas-Diaz T., Wei Y., Macho A.P., and Lozano-Duran R. The C4 protein from Tomato yellow leaf curl virus can broadly interact with plant receptor-like kinases. Viruses (2019) 31;11. https://doi.org/10.3390/v11111009


    46. Rubio L., Diaz-Garcia J., Amorim-Silva V., Macho A.P., Botella M. A., and Fernandez J.A. ZosmaNRT2 encodes the putative sodium dependent high-affinity nitrate transporter of Zostera marina L. International Journal of Molecular Sciences (2019) 26;20(15). https://doi.org/10.3390/ijms20153650


    45. Sabbagh C. R. R., Carrère S., Lonjon F., Vailleau F., Macho A.P., Genin S., and Peeters N. Pangenomic type III effector database of the plant pathogenic Ralstonia spp. PeerJ (2019) 7:e7346 https://doi.org/10.7717/peerj.7346


    44. Duan J., Lee K. P., Dogra V., Zhang S., Liu K., Caceres-Moreno C., Lv S., Xing W., Kato Y., Sakamoto W., Liu R., Macho A. P. and Kim C. Impaired PSII proteostasis promotes retrograde signaling via salicylic acid. Plant Physiology (2019) 180:2182-2197. doi: 10.1104/pp.19.00483.


    43. Amorim-Silva V., García-Moreno A., Castillo A.G., Lakhssassi N., Esteban del Valle A., Pérez-Sancho J., Li Y., Posé D., Pérez-Rodriguez J., Lin J., Valpuesta V., Borsani O., Zipfel C., Macho A.P., Botella M.A. TTL proteins scaffold brassinosteroid signaling components at the plasma membrane to optimize signal transduction in Arabidopsis. The Plant Cell (2019) 31:1807-1828.  doi: 10.1105/tpc.19.00150.


    42. Macho A.P.* & Lozano-Duran R.* Molecular dialogues between viruses and receptor-like kinases in plants. Molecular Plant Pathology (2019), 20:1191-1195. doi: 10.1111/mpp.12812. (* Co-corresponding authors)


    41. Lee E., Vanneste S., Pérez-Sancho J., Benitez-Fuente F., Strelau M., Macho A.P., Botella M.A., Friml J. and Rosado A. Ionic stress enhances ER-PM connectivity via phosphoinositide-associated SYT1 contact site expansion in Arabidopsis. PNAS (2019) 116:1420-1429. https://doi.org/10.1073/pnas.1818099116


    40. Zheng X., Li X., Wang B., Cheng D., Li Y., Li W., Huang M., Tan X., Zhao G., Song B., Macho A.P., Chen H., and Xie C. A systematic screen of conserved R. solanacearum effectors reveals the role of RipAB, a nuclear-localized effector that suppresses immune responses in potato. Molecular Plant Pathology (2019) 20:547-561.  doi: 10.1111/mpp.12774


    39. Yu G., Xian L., Sang Y. and Macho A.P. Cautionary notes on the use of Agrobacterium-mediated transient expression upon SGT1 silencing in Nicotiana benthamiana. New Phytologist (2019) 222:14-17.  doi: 10.1111/nph.15601


    38. Wang Y., Li Y., Rosas-Diaz T., Caceres-Moreno C., Lozano-Duran R., and Macho A.P. The IMMUNE-ASSOCIATED NUCLEOTIDE-BINDING 9 protein is a regulator of basal immunity in Arabidopsis thaliana. Molecular Plant-Microbe Interactions (2019) 32:65-75. doi.org/10.1094/MPMI-03-18-0062-R


    37. Perraki A., DeFalco T., Derbyshire P., Avila J., Sere D., Sklenar J., Qi X., Stransfeld L., Schwessinger B., Kadota Y., Macho A.P., Jiang S., Couto D., Torii K.U., Menke F.L.H. and Zipfel C. Phosphocode-dependent functional dichotomy of the common co-receptor BAK1 in plant signaling. Nature (2018) 561:248-252.


    36. Rufián J.S., Lucia A., Rueda-Blanco J., Zumaquero A., Guevara C.M., Ortiz-Martin I., Ruiz-Aldea G., Macho A.P., Beuzon C.R. and Ruiz-Albert J. Suppression of HopZ effector-triggered plant immunity in a natural pathosystem. Frontiers in Plant Science (2018), 14;9:977. doi.org/10.3389/fpls.2018.00977


    35. Zhao Y., Zhang Z., Gao J., Wang P., Hu T., Wang Z., Hou Y.J., Wan Y., Liu W., Xie S., Lu T., Xue L., Liu Y, Macho A.P., Tao W.A., Bressan R.A., and Zhu J.K. Arabidopsis Duodecuple Mutant of PYL ABA Receptors Reveals PYL Repression of ABA-Independent SnRK2 Activity. Cell Reports (2018) 23: 3340 - 3351.e5


    34. Wei Y., Caceres-Moreno C., Jimenez-Gongora T., Wang K., Sang Y., Lozano-Duran R. and Macho A.P. The Ralstonia solanacearum csp22 peptide, but not flagellin-derived peptides, is perceived by plants from the Solanaceae family. Plant Biotechnology Journal (2018),16:1349-1362.


    33. Wei Y. #, Sang Y. # and Macho A.P. The Ralstonia solanacearum type III effector RipAY is phosphorylated in plant cells to modulate its enzymatic activity. Frontiers in Plant Science (2017) 8: 1899.


    32. Jiang G., Wei Z., Xu J., Chen H., Zhang Y., She X., Macho A.P., Ding W. and Liao B. Bacterial Wilt in China: history, current status and future perspectives. Frontiers in Plant Science (2017) 8: 1549.


    31. Sun Y.#, Wang K.#, Caceres-Moreno C.#, Jia W., Chen A., Zhang H., Liu R.* and Macho A.P.* Genome sequencing and analysis of Ralstonia solanacearum phylotype I strains FJAT-91, FJAT-452 and FJAT-462 isolated from tomato, eggplant, and chilli pepper in China. Standards in Genomic Sciences (2017) 12:29.


    30. Puigvert M., Guarischi-Sosa R., Zuluaga P., Coll N.S., Macho A.P., Setubal J.C. and Valls M. Transcriptomes of Ralstonia solanacearum during root colonization of Solanum commersonii. Frontiers in Plant Science (2017) 8: 370.


    29. Rufián J.S., Macho A.P., Corry D.S., Mansfield J.W., Ruiz-Albert J., Arnold D. and and Beuzón C.R. Confocal microscopy reveals in planta dynamic interactions between pathogenic, avirulent and non-pathogenic Pseudomonas syringae strains. Molecular Plant Pathology (2017), Final publication 2018 19:537-551.


    28. Sang Y.Y. & Macho A.P. Analysis of PAMP-triggered ROS Burst in Plant Immunity. Methods in Molecular Biology (2017) 1578:143-153.


    27. Sang Y., Wang Y., Ni H., Cazalé-Noel A.C., She Y., Peeters N. and Macho A.P. The Ralstonia solanacearum type-III effector RipAY targets plant redox regulators to suppress immune responses. Molecular Plant Pathology (2016). Final publication 2018 19: 129-142.


    26. Rufián J.S., Sánchez-Romero M.A., López-Márquez D., Macho A.P., Mansfield J.W., Arnold D.L., Ruiz-Albert J., Casadesús J. and Beuzón C.R. Pseudomonas syringae differentiates into phenotypically distinct subpopulations during colonization of a plant host. Environmental Microbiology (2016) 18:3593-3605.

    25. Couto D., Niebergall R., Liang X., Bücherl C.A., Sklenar J., Macho A.P., Ntoukakis V., Derbyshire P., Altenbach D., Maclean D., Robatzek S., Uhrig J., Menke F., Zhou J.M. and Zipfel C. The Arabidopsis Protein Phosphatase PP2C38 Negatively Regulates the Central Immune Kinase BIK1. PLoS Pathogens (2016) 12 (8).


    24. Castro P.H., Couto D., Freitas S., Verde N., Macho A.P., Huguet S., Botella M.A., Ruiz-Albert J., Tavares R.M., Bejarano E.R. and Azevedo H. SUMO proteases ULP1c and ULP1d are required for development and osmotic stress responses in Arabidopsis thaliana. Plant Molecular Biology (2016) 92:143-59.


    23. Rosas-Díaz T., Macho A.P., Beuzón C.R., Lozano-Durán R. and Bejarano E.R. The C2 Protein from the Geminivirus Tomato Yellow Leaf Curl Sardinia Virus Decreases Sensitivity to Jasmonates and Suppresses Jasmonate-Mediated Defences. Plants (2016) 5 (1), 8.


    22. Macho A.P., Rufián J.S., Ruiz-Albert J. and Beuzón C.R. Competitive Index: Mixed Infection-Based Virulence Assays for Genetic Analysis in Pseudomonas syringae-Plant Interactions. Methods in Molecular Biology (2016) 1363:209-17.


    21. Kadota Y., Macho A.P. and Zipfel C. Immunoprecipitation of Plasma Membrane Receptor-Like Kinases for Identification of Phosphorylation Sites and Associated Proteins. Methods in Molecular Biology (2016) 1363:133-44.


    20. Macho A.P. Subversion of plant cellular functions by bacterial type-III effectors: beyond suppression of immunity. New Phytologist (2016) 210: 51–57. doi:10.1111/nph.13605


    19. Rufián J.S., Lucía A., Macho A.P., Orozco-Navarrete B., Arroyo-Mateos M.A., Bejarano E.R., Beuzón C.R. and Ruiz-Albert J. Auto-acetylation on K289 is not essential for HopZ1a-mediated plant defense suppression. Frontiers in Microbiology (2015) 6: 684.


    18. Macho A.P.*, Lozano-Durán R. and Zipfel C*. Importance of tyrosine phosphorylation in receptor kinase complexes. Trends in Plant Science (2015) 20: 269-272. (* Co-corresponding authors)


    17. Macho A.P. & Zipfel C. Targeting of PRR-triggered immunity by type-III effectors from plant pathogenic bacteria. Current Opinion in Microbiology (2015) 23: 14–22.


    16. Segonzac C., Macho A.P., Sanmartín M., Ntoukakis V., Sánchez-Serrano J.J. and Zipfel C. Negative control of BAK1 by Protein Phosphatase 2A during plant innate immunity. EMBO Journal (2014) 33: 2069-79.


    15. Macho A.P. and Zipfel C. Plant PRRs and the activation of innate immune signaling. Molecular Cell (2014) 54: 263-272.


    14. Macho A.P.*, Schwessinger, B.*, Ntoukakis V.*, Brutus A., Segonzac C., Roy S., Kadota Y., Oh M-H., Sklenar J., Derbyshire P., Lozano-Durán R., Gro Malinovsky F., Monaghan J., Menke F.L., Huber S.C., He S.Y. and Zipfel C. (* Co-first authors) A bacterial tyrosine phosphatase inhibits plant pattern recognition receptor activation. Science (2014) 343: 1509-1512.

    - Featured in The Faculty of 1000.

    - Featured as Editor’s Choice in Science Signaling 7, ec86 (2014).

    - Featured as a Research Highlight in Nature Chemical Biology 10, 324 (2014).

    - Featured as a Leading Edge Select in Cell 157, 759-761 (2014).


    13. Lozano-Durán R., Macho A.P., Boutrot F., Segonzac C., Somssich I. and Zipfel C. The transcriptional regulator BZR1 mediates trade-off between plant innate immunity and growth. eLife (2013) 2:e00983.


    12. Sun Y., Li L., Macho A.P., Han Z., Hu Z., Zipfel C., Zhou J.M. and Chai J.J. Structural basis for flg22-induced activation of the Arabidopsis FLS2-BAK1 immune complex. Science (2013) 342: 624-628.


    11. Macho A.P., Boutrot F., Rathjen J.P. and Zipfel C. Aspartate Oxidase plays an important role in Arabidopsis stomatal immunity. Plant Physiology (2012) 159 (4): 1845-56.


    10. Macho A.P.*, Zumaquero A.*, González-Plaza J.J., Ortiz-Martín I., Rufián J.S. and Beuzón C.R. Genetic analysis of the individual contribution to virulence of the type III effector inventory of Pseudomonas syringae pv. phaseolicola. (* Co-first authors) PLoS One (2012) 7 (4): e35871.

    9. Macho A.P. and Beuzón, C.R. Insights into plant immunity signaling: The bacterial competitive index angle. Plant Signaling & Behavior (2010) 5, 1-4.


    8. Zumaquero, A., Macho, A.P., Rufián, J.S. and Beuzón, C.R. Approaching the role of the type III effector inventory of Pseudomonas syringae pv. phaseolicola 1448a in the interaction with the plant. Journal of Bacteriology (2010) 192 (17): 4474-4488. Featured in The Faculty of 1000.


    7. Macho A.P., Guevara C.M., Tornero P., Ruiz-Albert J. and Beuzón C.R. The Pseudomonas syringae type III effector HopZ1a suppresses effector-triggered immunity. New Phytologist (2010) 187 (4): 1018-1033.


    6. Macho A.P.*, Guidot A.*, Barberis P., Beuzón C.R. and Genin S. A competitive index assay identifies several Ralstonia solanacearum Type III effector mutant strains with reduced fitness in host plants. (* Co-first authors) Molecular Plant-Microbe Interactions (2010) 23 (9): 1197–1205.


    5. Ortiz-Martín I., Thwaites R., Macho A.P., Mansfield J.W. and Beuzón C.R. Positive regulation of the Hrp type III secretion system in Pseudomonas syringae pv. phaseolicola. Molecular Plant-Microbe Interactions (2010) 23 (5): 665-681.


    4. Macho A.P., Ruiz-Albert J., Tornero P. and Beuzón C.R. Identification of new type III effectors and analysis of the plant response by competitive index. Molecular Plant Pathology (2009) 10 (1): 69-80.


    3. Rodríguez-Moreno L., Pineda M., Soukupová J., Macho, A.P., Beuzón C.R., Barón M., Ramos C. Early detection of bean infection by Pseudomonas syringae in asymptomatic leaf areas using chlorophyll fluorescente imaging. Photosynthesis research (2008) 96 (1): 27-35.


    2. Macho A.P., Zumaquero A., Ortiz-Martín I., and Beuzón C.R. Competitive index in mixed infections: a sensitive and accurate assay for the genetic analysis of Pseudomonas syringae-plant interactions. Molecular Plant Pathology (2007) 8 (4): 437–450.


    1. Ortiz-Martín I., Macho A.P., Lambertsen L., Ramos C. and Beuzón C.R. Suicide vectors for antibiotic marker exchange and rapid generation of multiple knockout mutants by allelic exchange in Gram-negative bacteria. Journal of Microbiological Methods (2006) 67 (3): 395-407.